

8-bit
Microcontrollers

Application Note

Rev. 8106A-AVR-04/08

AVR1318: Using the XMEGA built-in AES
accelerator

Features
• Full compliance with AES (FIPS Publication 197, 2002)

- Both encryption and decryption procedures
• 128-bit Key and State memory
• XOR load option to State memory useful for cipher block coding
• Sequential access to State and Key memories
• Optional Interrupt- and DMA request on AES complete

1 Introduction
The XMEGA™ AES Crypto Module supports the Advanced Encryption Standard
(AES), and can perform encryption and decryption. The module supports a key
length of 128 bits. The 128-bit key block and 128-bit data block (plaintext or
ciphertext) must be loaded into the Key and State memory in the AES Crypto
Module. The AES uses 375 clock cycles to execute one encryption/decryption after
the Key and State memory is loaded and the mode of operation is selected.

This application note describes the basic functionality of the XMEGA AES with
code examples to get up and running quickly. A driver interface written in C is
included as well.

Advanced usage, such as Direct Memory Access and the XMEGA Event System,
is outside the scope of this application note. Please refer to the device datasheets
and other relevant application notes for details.

2 AVR1318
8106A-AVR-04/08

2 Theory
Cryptography is the art or science of keeping information secret and is based on
either hiding the cryptographic method or securing the cryptographic key. Algorithms
only based on the secrecy of the method used are mainly of historical interest and do
not meet the needs of the real world. Modern algorithms use a key to control
encryption and decryption. Without the matching key, the scrambled message or data
cannot be arranged into plaintext.

Algorithms based on cryptographic keys are divided in two classes; symmetric and
asymmetric. Symmetric algorithms use the same key for encryption and decryption
while asymmetric algorithms use different keys. AES is a symmetric key algorithm.

2.1 Advanced Encryption Standard – AES
This section is not intended to be a detailed description of the AES algorithm, but a
brief overview. For more details the reader should study the AES specification. The
AES algorithm uses functions that are based on finite field arithmetic. The AES
algorithm has a fixed block size of 128 bits, while the length of the key can be 128,
192 or 256 bits depending on the desired security. The flow of the AES algorithm is
illustrated in Figure 2-1. See AES specification for explanation of the different
operations in the flowchart.

 AVR1318

Figure 2-1 Encryption and Decryption flowcharts

Add Round Key

Inverse Shift Rows

Inverse Substitute
Bytes

Add Round Key

Inverse Mix Columns

Ready for the
last round ?

Inverse Shift Rows

Inverse Substitute
Bytes

Add round key

Decrypt Block

Return

No

Yes

Add Round Key

Substitute Bytes

Shift Rows

Mix Columns

Add Round Key

Ready for the
last round ?

Substitute Bytes

Shift Rows

Add Round Key

Encrypt Block

Return

No

Yes

The number of rounds the algorithm needs to run is depended on the key length.

2.2 Cipher Block Chaining (CBC)
AES is a block cipher, meaning that the algorithm operates on fixed size blocks of
data. For known input block and a constant encryption key, the output will always be
the same. This information may provide useful for somebody wanting to attack the
cipher system.

There are methods commonly used, which cause identical plaintext blocks being
encrypted to different ciphertext blocks. One such methode called Cipher Block
Chaining (CBC).

CBC is a method of connecting the cipher blocks such that leading blocks influence
all trailing blocks. This is achieved by first performing an XOR operation on the

 3

8106A-AVR-04/08

4 AVR1318

plaintext block and the previous ciphertext block before encrypting the result. This
increases the number of plaintext bits one ciphertext bit depends on.

Figure 2-2. CBC Encryption

Encryption Encryption

Plaintext 0

Initalization vector

Ciphertext 0

Plaintext 1

Keys Keys Encryption

Ciphertext 1

Plaintext N

Keys

Ciphertext N

Figure 2-3. CBC Decryption

Decryption Decryption

Ciphertext 0

Initalization vector

Plaintext 0

Plaintext 1

Keys Keys Decryption

Ciphertext 0

Plaintext N

Keys

Ciphertext N

3 AES Crypto Module
The following subsections contain an introduction on how to operate the AES Crypto
Module. The different feature the AES Crypto Module supports is also presented.

The XMEGA AES Crypto Module supports an AES key length of 128-bits. The service
of the AES Crypto Module can be executed through an interrupt mechanism or
polling.

The DMA can also be setup to handle the AES crypto module, but this is outside the
scope of this application note. For more information, please refer to the device
datasheet or the application note “AVR1304: Using the XMEGA DMA Controller”.

3.1 Key and State memory
The AES Crypto Module contains two 128 bits memories needed to keep the AES
plaintext/ciphertext and the Key. Note that in the AES Crypto Module the following
definition of the Key is used:

• In encryption mode, the Key is the one defined in the AES standard.

• In decryption mode, the Key is the last subkey of the Expanded Key
defined in the AES standard.

The State and Key memory can be written / read sequentially byte by byte through
the AES State Register (STATE) or AES Key Register (KEY). Both the State and Key
memory have two 4-bit address pointers that address the memory for read and write
access. The appropriate pointer is automatically incremented after an access to the
AES memory. It is only possible to access the Key and State memories while the AES
start bit (START) in the AES Control register (CTRL) is zero.

8106A-AVR-04/08

 AVR1318

 5

8106A-AVR-04/08

NOTE: Both the Key and State memory must be completely loaded before an
encryption/decryption can start, if not the AES Error flag (ERROR) in the status register
(STATUS) is set.

3.2 Encryption
To execute an AES encryption using the AES Crypto Module the following should be
done.

• Enable/disable AES interrupts, by setting/clearing the Interrupt priority and enable
bits (INTLVL) in the Interrupt Control register (INTCTRL).

• Select the AES encryption direction, by clearing the decrypt bit (decrypt) in the
control register (CTRL).

• Load the AES key into the AES Key memory
• Load the data block into the AES State memory
• Start encryption, by setting the start bit (START) in the control register (CTRL).

When the encryption is completed, the AES State Ready Interrupt Flag (SRIF) in the
AES Status register (STATUS) is set. If the interrupt mechanism is used an interrupt is
generated. The AES State memory will after an encryption is completed contain the
generated ciphertext while the AES Key memory will contain the last subkey of the
Expanded Key defined in the AES standard.

3.3 Decryption
To execute an AES decryption using the AES Crypto Module the following should be
done.

• Enable/disable AES interrupts, by setting/clearing the Interrupt priority and enable
bits (INTLVL) in the Interrupt Control register (INTCTRL).

• Select the AES decryption direction, by setting the decrypt bit (decrypt) in the
control register (CTRL).

• Load the last subkey of the Expanded Key defined in the AES standard into the
AES Key memory.

• Load the data block into the AES State memory
• Start decryption, by setting the start bit (START) in the control register (CTRL).

When the decryption is completed, the AES State Ready Interrupt Flag (SRIF) in the
AES Status register (STATUS) is set. If the interrupt mechanism is used an interrupt is
generated. The AES State memory will after a decryption is completed contain the
generated plaintext while the AES Key memory will contain the original Key defined in
the AES standard.

NOTE: The last subkey of the Expanded Key that is needed to do a decryption can be
generated in two optional ways. It can be generated by a Key Expansion procedure
executed in software or by the AES Crypto module. The AES Crypto Module can
generate the last subkey of the Expanded Key by processing a dummy data block in
encryption mode, using the original Key. After the end of the encryption, the Key
memory contains the last subkey.

6 AVR1318
8106A-AVR-04/08

3.4 AES State XOR load
When the AES State XOR load feature is enabled the loaded value to the AES State
memory is bitwise XORed with the current value of the AES Stat memory. To enable
AES State XOR feature set the XOR bit (XOR) in the AES Control register (CTRL).
This feature is very useful when CBC or other Cipher Modes shall be executed.

3.5 AES Auto Start Trigger
When the AES Auto Start Trigger feature is enabled the encryption/decryption will
automatically start when the State register is fully loaded.

4 Driver Implementation
This application note includes a source code package with a basic AES driver
implemented in C. It is written for the IAR Embedded Workbench® compiler.

The AES driver supports encryption and decryptions of single block data and CBC.
Both interrupted and a polled version of the driver is supported.

Note that this AES driver is not intended for use with high-performance code. It is
designed as a library to get started using the AES accelerator. Please refer to the
driver source code and device datasheet for more details.

4.1 Files
The source code package consists of three files:

• AES_driver.c – AES accelerator driver source file.
• AES_driver.h – DES accelerator driver header file.
• AES_example_polled.c – Example code using the polled driver.
• AES_example_interrupt.c – Example code using the interrupt driver.

For a complete overview of the available driver interface functions and their use,
please refer to the source code documentation.

4.2 Doxygen Documentation
All source code is prepared for automatic documentation generation using Doxygen.
Doxygen is a tool for generating documentation from source code by analyzing the
source code and using special keywords. For more details about Doxygen please visit
http://www.doxygen.org. Precompiled Doxygen documentation is also supplied with
the source code accompanying this application note, available from the readme.html
file in the source code folder.

http://www.doxygen.org/

Disclaimer
Headquarters International

Atmel Corporation
2325 Orchard Parkway
San Jose, CA 95131
USA
Tel: 1(408) 441-0311
Fax: 1(408) 487-2600

 Atmel Asia
Room 1219
Chinachem Golden Plaza
77 Mody Road Tsimshatsui
East Kowloon
Hong Kong
Tel: (852) 2721-9778
Fax: (852) 2722-1369

Product Contact

Atmel Europe
Le Krebs
8, Rue Jean-Pierre Timbaud
BP 309
78054 Saint-Quentin-en-
Yvelines Cedex
France
Tel: (33) 1-30-60-70-00
Fax: (33) 1-30-60-71-11

Atmel Japan
9F, Tonetsu Shinkawa Bldg.
1-24-8 Shinkawa
Chuo-ku, Tokyo 104-0033
Japan
Tel: (81) 3-3523-3551
Fax: (81) 3-3523-7581

 Web Site
www.atmel.com

Technical Support
avr@atmel.com

Sales Contact
www.atmel.com/contacts

 Literature Request
www.atmel.com/literature

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any
intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL’S TERMS AND
CONDITIONS OF SALE LOCATED ON ATMEL’S WEB SITE, ATMEL® ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED
OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT,
CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS,
BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS
BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the
contents of this document and reserves the right to make changes to specifications and product descriptions at any time without notice. Atmel does not make any
commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in,
automotive applications. Atmel’s products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.

© 2008 Atmel Corporation. All rights reserved. Atmel®, logo and combinations thereof, AVR® and others, are the registered trademarks,
XMEGATM and others are trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.

8106A-AVR-04/08

	1 Introduction
	2 Theory
	2.1 Advanced Encryption Standard – AES
	2.2 Cipher Block Chaining (CBC)

	3 AES Crypto Module
	3.1 Key and State memory
	3.2 Encryption
	3.3 Decryption
	3.4 AES State XOR load
	3.5 AES Auto Start Trigger

	4 Driver Implementation
	4.1 Files
	4.2 Doxygen Documentation

